
CS161 Introduction to
Computer Security

Exam Prep 2
Spring 2026

Q1 Indirection (18 points)

Consider the following vulnerable C code:

1 #include <stdlib.h>

2 #include <string.h>

3

4 struct log_entry {

5 char title[8];

6 char *msg;

7 };

8

9 void log_event(char *title, char *msg) {

10 size_t len = strnlen(msg, 256);

11 if (len == 256) return; /* Message too long. */

12 struct log_entry *entry = malloc(sizeof(struct log_entry));

13 entry->msg = malloc(256);

14 strcpy(entry->title, title);

15 strncpy(entry->msg, msg, len + 1);

16 add_to_log(entry); /* Implementation not shown. */

17 }

Assume you are on a little-endian 32-bit x86 system and no memory safety defenses are enabled.

Q1.1 (3 points) Which of the following lines contains a memory safety vulnerability?

Line 10

Line 13

Line 14

Line 15

Page 1 of 6

This content is protected and may not be shared, uploaded, or distributed.

(Question 1 continued…)

Q1.2 (3 points) Fill in the numbered blanks on the following stack and heap diagram for log_event.

Assume that lower-numbered addresses start at the bottom of both diagrams.

Stack

msg

1

rip

sfp

len

entry

Heap

3

2

1 = entry->title 2 = entry->title 3 = msg

1 = entry->title 2 = msg 3 = entry->title

1 = title 2 = entry->title 3 = entry->msg

1 = title 2 = entry->msg 3 = entry->title

Using GDB, you find that the address of the rip of log_event is 0xbfffe0f0.

Let SHELLCODE be a 40-byte shellcode. Construct an input that would cause this program to execute

shellcode. Write all of your answers in Python 3 syntax (just like Project 1).

Q1.3 (6 points) Give the input for the title argument.

Q1.4 (6 points) Give the input for the msg argument.

Exam Prep 2 Page 2 of 6 CS161 — Spring 2026

This content is protected and may not be shared, uploaded, or distributed.

Q2 Stack Exchange (19 points)

Consider the following vulnerable C code:

1 #include <byteswap.h>

2 #include <inttypes.h>

3 #include <stdio.h>

4

5 void prepare_input(void) {

6 char buffer[64];

7 int64_t *ptr;

8

9 printf("What is the buffer?\n");

10 fread(buffer, 1, 68, stdin);

11

12 printf("What is the pointer?\n");

13 fread(&ptr, 1, sizeof(uint64_t *), stdin);

14

15 if (ptr < buffer || ptr >= buffer + 68) {

16 printf("Pointer is outside buffer!");

17 return;

18 }

19

20 /* Reverse 8 bytes of memory at the address ptr */

21 *ptr = bswap_64(*ptr);

22 }

23

24 int main(void) {

25 prepare_input();

26 return 0;

27 }

The bswap_64 function1 takes in 8 bytes and returns the 8 bytes in reverse order.

Assume that the code is run on a 32-bit system, no memory safety defenses are enabled, and there are no

exception handlers, saved registers, or compiler padding.

1Technically, this is a macro, not a function.

Exam Prep 2 (Question 2 continues…) Page 3 of 6 CS161 — Spring 2026

This content is protected and may not be shared, uploaded, or distributed.

(Question 2 continued…)

Q2.1 (3 points) Fill in the numbered blanks on the following stack diagram for prepare_input.

1 (0xbffff494)

2 (0xbffff490)

3 (0xbffff450)

4 (0xbffff44c)

1 = sfp, 2 = rip, 3 = buffer, 4 = ptr

1 = sfp, 2 = rip, 3 = ptr, 4 = buffer

1 = rip, 2 = sfp, 3 = buffer, 4 = ptr

1 = rip, 2 = stp, 3 = ptr, 4 = buffer

Q2.2 (4 points) Which of these values on the stack can the attacker write to at lines 10 and 13? Select all

that apply.

buffer

ptr

sfp

rip

None of the above

Q2.3 (3 points) Give an input that would cause this program to execute shellcode. At line 10, first input

these bytes:

64-byte shellcode

\xbf\xff\xf4\x4c

\x4c\xf4\xff\xbf

\xbf\xff\xf4\x50

\x50\xf4\xff\xbf

Q2.4 (3 points) Then input these bytes:

64-byte shellcode

\xbf\xff\xf4\x4c

\x4c\xf4\xff\xbf

\xbf\xff\xf4\x50

\x50\xf4\xff\xbf

Q2.5 (3 points) At line 13, input these bytes:

\xbf\xff\xf4\x50

\x50\xf4\xff\xbf

\xbf\xff\xf4\x90

\x90\xf4\xff\xbf

\xbf\xff\xf4\x94

\x94\xf4\xff\xbf

Q2.6 (3 points) Suppose you replace 68 with 64 at line 10 and line 15. Is this modified code memory-safe?

Yes No

Exam Prep 2 Page 4 of 6 CS161 — Spring 2026

This content is protected and may not be shared, uploaded, or distributed.

Q3 Palindromify (9 points)

Consider the following C code:

1 struct flags {

2 char debug[4];

3 char done[4];

4 };

5

6 void palindromify(char *input, struct flags *f) {

7 size_t i = 0;

8 size_t j = strlen(input);

9

10 while (j > i) {

11 if (input[i] != input[j]) {

12 input[j] = input[i];

13 if (strncmp("BBBB", f->debug, 4) == 0) {

14 printf("Next: %s\n", input);

15 }

16 }

17 i++; j--;

18 }

19 }

20

21 int main(void) {

22 struct flags f;

23 char buffer[8];

24 while (strncmp("XXXX", f.done, 4) != 0) {

25 gets(buffer);

26 palindromify(buffer, &f);

27 }

28 return 0;

29 }

Assume you are on a little-endian 32-bit x86 system. Assume that there is no compiler padding or saved

registers in all questions.

Here is the function definition for strncmp:

int strncmp(const char *s1, const char *s2, size_t n);

The strncmp() function compares the first (at most) n bytes of

two strings s1 and s2. It returns an integer less than, equal

to, or greater than zero if s1 is found, respectively, to be

less than, to match, or be greater than s2

Exam Prep 2 (Question 3 continues…) Page 5 of 6 CS161 — Spring 2026

This content is protected and may not be shared, uploaded, or distributed.

(Question 3 continued…)

Q3.1 (3 points) Which of the following lines contains a memory safety vulnerability?

Line 10

Line 12

Line 24

Line 25

Q3.2 (3 points) Which of these inputs would cause the program to execute shellcode located at

0xbfff34d0?

'\x00' + (11 * A) + (4 * 'X') + (4 * 'A') + '\xd0\x34\xff\xbf'

'\x00' + (19 * 'A') + '\xd0\x34\xff\xbf'

(20 * 'X') + '\xd0\x34\xff\xbf'

'\x00' + (7 * 'A') + (4 * 'X') + (4 * 'A') + '\xd0\x34\xff\xbf'

(16 * 'X') + '\xd0\x34\xff\xbf'

None of the above

Q3.3 (3 points) Assume you did the previous part correctly. At what point will the instruction pointer

jump to the shellcode?

Immediately after palindromify returns

Immediately after main returns

Immediately after gets returns

Immediately after printf returns

Exam Prep 2 Page 6 of 6 CS161 — Spring 2026

This content is protected and may not be shared, uploaded, or distributed.

	Indirection
	Stack Exchange
	Palindromify

