
CS161 Introduction to
Computer Security

Exam Prep 1
Spring 2026

Q1 Security Principles (10 points)

Select the best answer to each question.

Q1.1 (2 points) A company requires that employees change their work machines’ passwords every 30

days, but many employees find memorizing a new password every month difficult, so they either

write it down or make small changes to existing passwords. Which security principle does the

company’s policy violate?

Defense in depth

Consider human factors

Ensure complete mediation

Fail-safe defaults

Solution: Here is an article that discusses why password rotation should be phased out in

practice, if you’re interested in reading more.

Q1.2 (2 points) In the midst of a PG&E power outage, Carol downloads a simple mobile flashlight app.

As soon as she clicks a button to turn on the flashlight, the app requests permissions to access her

phone’s geolocation, address book, and microphone. Which security principle does this violate?

Security is economics

Separation of responsibility

Least privilege

Design in security from the start

Solution: A flashlight application does not actually need these permissions in order to execute

its functionality. It is over-permissioning its access to sensitive resources, violating the principle

of least privilege.

Q1.3 (2 points) A private high school has 100 students, who each pay $10,000 in tuition each year. The

principal hires a CS 161 alum as a consultant, who discovers that the “My Finances” section of

the website, which controls students’ tuition, is vulnerable to a brute force attack. The consultant

estimates an attacker could rent enough compute power with $20 million to break the system, but

tells the principal not to worry because of which security principle?

Security is economics

Least privilege

Design in security from the start

Consider human factors

Solution: The website handles $1 million per year; not large enough that an attacker would have

an incentive to spend $20 million to steal it.

Page 1 of 7

This content is protected and may not be shared, uploaded, or distributed.

https://www.ftc.gov/news-events/blogs/techftc/2016/03/time-rethink-mandatory-password-changes

(Question 1 continued…)

Q1.4 (2 points) The consultant notices that a single admin password provides access to all of the school’s

funds and advises the principal that this is dangerous. What principle would the consultant argue

the school is violating?

Don’t rely on security through obscurity

Separation of responsibility

Design in security from the start

Fail-safe defaults

Solution: A single person should not be able to spend all of the school’s funds without working

with others to do so — splitting up responsibility between multiple people reduces the likelihood

that a bad actor can steal money if they discover a single password.

Q1.5 (2 points) Course staff at Stanford’s CS155 accidentally released their project with solutions in it! In

order to conceal what happened, they quickly re-released the project and didn’t mention what had

happened in the hope that no one would notice. This is an example of not following which security

principle?

Security is economics

Don’t rely on security through obscurity

Separation of responsibility

Know your threat model

Least privilege

None of the above

Solution: Uhh, can you guess where we got the idea for this question? Hint: It wasn’t Stanford…

Exam Prep 1 Page 2 of 7 CS161 — Spring 2026

This content is protected and may not be shared, uploaded, or distributed.

Q2 x86 Potpourri (Extended) (11 points)

Q2.1 (1 point) In normal (non-malicious) programs, the EBP is always greater than or equal to the ESP.

True False

Solution: The EBP always points to the top of the current stack frame during normal execution,

while the ESP always points to the bottom.

Q2.2 (1 point) Arguments are pushed onto the stack in the same order they are listed in the function

signature.

True False

Solution: Arguments are pushed in reverse order.

Q2.3 (1 point) A function always knows ahead of time how much stack space it needs to allocate.

True False

Solution: This corresponds to Step 6 of the calling convention.

Q2.4 (1 point) Step 10 (“Restore the old eip (rip).”) is often done via the ret instruction.

True False

Solution: ret is equivalent to pop %eip.

Q2.5 (1 point) In GDB, you run x/wx &arr and see this output:

 0xfffff62a: 0xfffff70c

True or False: 0xfffff62a is the address of arr and 0xfffff70c is the value stored at &arr.

True False

Solution: The left side of a GDB output corresponds to the address, and the right side corre

sponds to the value at the address.

Q2.6 (1 point) Which steps of the x86 calling convention are executed by the caller?

Steps 1, 2, 3, and 11.

Q2.7 (1 point) Which steps of the x86 calling convention are executed by the callee?

Steps 4-10.

Exam Prep 1 (Question 2 continues…) Page 3 of 7 CS161 — Spring 2026

This content is protected and may not be shared, uploaded, or distributed.

(Question 2 continued…)

Q2.8 (1 point) What does the nop instruction do?

Solution: nop does nothing and moves the EIP to the next instruction.

Q2.9 (1 point) Consider the following C code and some of its assembly:

1 void foo(int bar) {

2 // Implementation not shown

3 }

4

5 void main() {

6 int bar = 0;

7 foo(bar);

8 }

1 x08001008:

2 x0800100c: call foo

3 x08001010:

Fill in the blanks for the instructions surrounding call foo in the assembly for main.

Solution: The first line will be pushing the arguments (in this case, a single 0, represented as the

immediate $0).

The last line will be Step 11 in the calling convention, moving the ESP back up past the arguments

pushed onto the stack.

1 0x08001008: push $0

2 0x0800100c: call foo

3 0x08001010: add $4, %esp

Q2.10 (1 point) EvanBot manages to set the value of the SFP of foo to 0x00000000 before foo returns.

What is most likely to happen next?

The program will crash immediately, before returning from foo.

The program will crash when attempting to return from foo.

The program will crash when attempting to return from main.

The program will finish executing without crashing.

Solution: When returning from foo, EBP will be set to null, but is otherwise not used (note that

no arguments are accessed in main). When main returns, ESP is set to EBP and then popped,

which will cause a segmentation fault crash due to trying to read from a null pointer.

Exam Prep 1 (Question 2 continues…) Page 4 of 7 CS161 — Spring 2026

This content is protected and may not be shared, uploaded, or distributed.

(Question 2 continued…)

Q2.11 (1 point) EvanBot has edited their program stack to look like the following.

1 RIP of main

2 pop %eip

3 SFP of foo

They reason that when foo returns, “pop %eip” will be popped into the EIP, which is then executed

to pop “RIP of main” into the EIP. Note that the value “pop %eip” on the stack represents the actual

value, not a variable name or pointer.

Is this correct? Explain why or why not.

Correct Incorrect

Solution: This will not work because EIP holds an address to an instruction, not the instruction

itself. We would need to have the address of ret instead of ret itself.

Exam Prep 1 Page 5 of 7 CS161 — Spring 2026

This content is protected and may not be shared, uploaded, or distributed.

Q3 Terminated (5 points)

Consider the following C code excerpt.

1 typedef struct {

2 char first[16];

3 char second[16];

4 } message;

5

6 void main() {

7 message msg;

8

9 fgets(msg.first, 17, stdin);

10

11 for (int i = 0; i < 16; i++) {

12 msg.second[i] = msg.first[i];

13 }

14

15 printf("%s\n", msg);

16 fflush(stdout);

17 }

Q3.1 (1 point) Fill in the following stack diagram, assuming that the program is paused at Line 9.

[4] RIP of main

[4] SFP of main

[16] msg.second

[16] msg.first

Q3.2 (1 point) Now, draw arrows on the stack diagram denoting where the ESP and EBP would point if

the code were executed until a breakpoint set on line 14.

Solution:

ESP points to msg.first, EBP points to main’s SFP.

[4] RIP of main

EBP → [4] SFP of main

[16] msg.second

ESP → [16] msg.first

Exam Prep 1 (Question 3 continues…) Page 6 of 7 CS161 — Spring 2026

This content is protected and may not be shared, uploaded, or distributed.

(Question 3 continued…)

You run GDB once, and discover that the address of the RIP of main is 0xffffcd84.

Q3.3 (1 point) What is the address of msg.first?

0xffffcd60

Solution:

SFP + msg.second + msg.first

= 4 bytes + 16 bytes + 16 bytes

= 36 bytes away

So, the address of msg.first is 0xffffcd84 – decimal 36 = 0xffffcd60.

Here is the fgets documentation for reference:

char *fgets(char *s, int size, FILE *stream);

 fgets() reads in at most one less than size characters from stream and
 stores them into the buffer pointed to by s. Reading stops after an EOF
 or a newline. If a newline is read, it is stored into the buffer. A
 terminating null byte ('\0') is stored after the last character in the
 buffer.

Q3.4 (1 point) Evanbot passes in “hello” to the fgets call and sees the program print “hello”. He expected

it to print “hellohello” since the first half was copied into the second half. Why is this not the case?

Solution:

fgets puts a null terminator at the end, which stops the printf after the first string.

Q3.5 (1 point) EvanBot passes in “hellohellohello!” (16 bytes) to the fgets call and sees the program print

“hellohellohello!hellohellohello!oaNWActYKJjflv5wI…” (not real output).

The program seems to have correctly copied the message, but EvanBot wonders why there seems

to be garbage output at the end. Why is this the case, and how can they fix their program?

Solution:

fgets puts a null terminator at the end, which stops the printf after the first string. However,

the limit given is 17 instead of 16, which means the entire first buffer is filled with non-null

characters. This buffer is then copied to the one above it on the stack, erasing the null terminator,

and letting printf keep going up the stack past the end of the normal buffer.

Exam Prep 1 Page 7 of 7 CS161 — Spring 2026

This content is protected and may not be shared, uploaded, or distributed.

	Security Principles
	x86 Potpourri (Extended)
	Terminated

