
CS161 Introduction to
Computer Security

Discussion 1
Spring 2026

Q1 Security Principles (10 points)

We discussed the following security principles in lecture (or in the textbook):

A. Know Your Threat Model: Know your attacker 

and their resources; the security assumptions 

originally made may no longer be valid

B. Consider Human Factors: Security systems must 

be usable by ordinary people

C. Security is Economics: Security is a cost-benefit 

analysis, since adding security usually costs 

more money

D. Detect If You Can’t Prevent: If one cannot pre

vent an attack, one should be able to at least 

detect when an attack happens

E. Defense in Depth: Layer multiple defenses to

gether

F. Least Privilege: Minimize how much privilege 

you give each program and system component

G. Separation of Responsibility: Split up privilege, 

so no one person or program has complete 

power

H. Ensure complete mediation: Make sure to check 

every access to every object

I. Consider Shannon’s Maxim: Do not rely on se

curity through obscurity

J. Use fail-safe defaults: If security mechanisms 

fail or crash, they should default to secure be

havior

K. Design in security from the start: Retrofitting 

security to an existing application after it has 

been developed is a difficult proposition

Identify the principle(s) relevant to each of the following scenarios.

Note that there may be more than one principle that applies in some of these scenarios.

Q1.1 (1 point) New cars often come with a valet key. This key is intended to be used by valet drivers who 

park your car for you. The key opens the door and turns on the ignition, but it does not open the 

trunk or the glove compartment.

Q1.2 (1 point) Many homeowners leave a house key under the floor mat in front of their door.

Q1.3 (1 point) It is not worth it to use a $400,000 bike lock to protect a $100 bike.

Page 1 of 5

This content is protected and may not be shared, uploaded, or distributed. 



(Question 1 continued…)

Q1.4 (1 point) Social security numbers were not originally designed as a secret identifier. Nowadays, they 

are often easily obtainable or guessable.

Q1.5 (1 point) Warranties on cell phones do not cover accidental damage, which includes liquid damage. 

However, many consumers who accidentally damage their phones with liquid will wait for it to 

dry and then claim that “it broke by itself.” To combat this threat, many companies have begun to 

include on the product a small sticker that turns red (and stays red) when it gets wet.

Q1.6 (1 point) Even if you use a password on your laptop lock screen, there is software that lets a skilled 

attacker with specialized equipment bypass it.

Q1.7 (1 point) Shamir’s secret sharing scheme allows us to split a “secret” between multiple people so 

that all of them have to collaborate in order to recover the secret.

Q1.8 (1 point) Banks often make you answer your security questions over the phone. Answers to these 

questions are “low entropy,” meaning that they are easy to guess. Some security-conscious people 

instead use a random password as the answer to the security question.1 However, attackers can 

sometimes convince the phone representative by claiming “I just put in some nonsense for that 

question.”

Q1.9 (1 point) Often times at bars, an employee will wait outside the only entrance to the bar, enforcing 

that people who want to enter the bar form a single-file line. Then, the employee checks each 

individual’s ID to verify if they are 21 before allowing them entry into the bar.

Q1.10 (1 point) Some electric vehicles come equipped with a secure park mode which records footage of 

any break-ins to the vehicle and alerts the vehicle owner of the incident.

1Q: What is your dog’s maiden name? A: “60ba6b1c881c6b87”

Discussion 1 Page 2 of 5 CS161 — Spring 2026

This content is protected and may not be shared, uploaded, or distributed.



Q2 Stack Diagram Practice (3 points)

For your reference, reproduced below are the 11 steps of x86 calling convention:

1. Push arguments onto the stack.

2. Push the old eip (rip) onto the stack

3. Move EIP

Execution changes to the callee here.

4. Push the old ebp (sfp) onto the stack. (push %ebp)

5. Move ebp down. (mov %esp, %ebp)

6. Move esp down.

7. Execute the function.

8. Move esp up. (mov %ebp, %esp)

9. Restore the old ebp (sfp). (pop %ebp)

10. Restore the old eip (rip). (pop %eip)

11. Remove arguments from the stack.

Consider the following function.

1 int swap(int* num1, int* num2, int arr_local[]) {

2     int temp = *num1;

3     *num1 = *num2;

4     arr_local[0] = *num1;

5     *num2 = temp;

6     arr_local[1] = *num2;

7     return 0;

8 }

9

10 int main(void) {

11     int x = 61;

12     int y = 1;

13     int arr[2];

14     swap(&x, &y, arr);

15     return 0;

16 }

Discussion 1 (Question 2 continues…) Page 3 of 5 CS161 — Spring 2026

This content is protected and may not be shared, uploaded, or distributed.



(Question 2 continued…)

Q2.1 (1 point) Draw the stack diagram if the code were executed until a breakpoint set on line 4. Assume 

normal (non-malicious) program execution. You do not need to write the values on the stack, only 

the names. When drawing the stack diagram, assume that each row in your diagram doesn’t have 

to represent 4 bytes in memory. The bottom of the page represents the lower addresses.

Q2.2 (1 point) Now, draw arrows on the stack diagram denoting where the ESP and EBP would point if 

the code were executed until a breakpoint set on line 4. Label these ESP4 and EBP4 respectively.

Q2.3 (1 point) The return instruction executes steps 8-10 of the calling convention. Draw arrows on the 

stack diagram denoting where the ESP and EBP would point for each of these steps. Label these 

ESP8-10 and EBP8-10 respectively.

Discussion 1 Page 4 of 5 CS161 — Spring 2026

This content is protected and may not be shared, uploaded, or distributed.



Q3 x86 Potpourri (8 points)

Q3.1 (1 point) In normal (non-malicious) programs, the EBP is always greater than or equal to the ESP.

True False

Q3.2 (1 point) Arguments are pushed onto the stack in the same order they are listed in the function 

signature.

True False

Q3.3 (1 point) A function always knows ahead of time how much stack space it needs to allocate.

True False

Q3.4 (1 point) Step 10 (“Restore the old eip (rip).”) is often done via the ret instruction.

True False

Q3.5 (1 point) In GDB, you run x/wx &arr and see this output:

    0xfffff62a: 0xfffff70c

True or False: 0xfffff62a is the address of arr and 0xfffff70c is the value stored at &arr.

True False

Q3.6 (1 point) Which steps of the x86 calling convention are executed by the caller?

Q3.7 (1 point) Which steps of the x86 calling convention are considered the “function epilogue”?

Q3.8 (1 point) What does the nop instruction do?

Discussion 1 Page 5 of 5 CS161 — Spring 2026

This content is protected and may not be shared, uploaded, or distributed.


	Security Principles
	Stack Diagram Practice
	x86 Potpourri

